If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9=16t^2+160t
We move all terms to the left:
9-(16t^2+160t)=0
We get rid of parentheses
-16t^2-160t+9=0
a = -16; b = -160; c = +9;
Δ = b2-4ac
Δ = -1602-4·(-16)·9
Δ = 26176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26176}=\sqrt{64*409}=\sqrt{64}*\sqrt{409}=8\sqrt{409}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-8\sqrt{409}}{2*-16}=\frac{160-8\sqrt{409}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+8\sqrt{409}}{2*-16}=\frac{160+8\sqrt{409}}{-32} $
| 3(x-5)=12x | | 798-0.14x=x | | 575-0.15x=x | | 120+(2-7n)+(4n+12)=360 | | 6x+18=-6+18 | | -5d=-6d+3 | | 4x/3-9=2x/3+2 | | 9=3-4ee=12 | | 6^-3x=9 | | 3x-4=2=2x | | 4x‐10=2x+2 | | 8x-1+6x=4x+5-6x | | 20-x=35 | | 5x-10=-3x+2 | | 1x^2-55=26 | | 10+5x=7+6x | | x^2-55=26 | | 2(16-x)=-16 | | 3x+8-7=41 | | 3x=25+5 | | 2x^2-98=0 | | 7b=8b+5 | | 3-5y=-2y+9 | | X-2x+8=44 | | x/(-6)=-9 | | 7=94x−1+54x | | 112=(X*y) | | 112=X*y | | x+9/5=15 | | 3x+21=5x-7 | | 1+1/2+2x=6+1/2 | | 16+3x=5x |